منابع
الف- فارسی
- ابراهیمی، سید نصراله؛ محمودی، امیررضا؛ و میری بالاجورشری، سیده مهشید (1401). «بررسی تطبیقی سیاست کیفری انتشار اطلاعات نادرست در رسانههای مجازی»،فصلنامه آموزههای فقه و حقوق جزاء، 1 (1)، 1-20.
- اخگری، محمدرضا؛ ممتازی، سعیده (1402). «کاربرد هوش مصنوعی در راستیآزمایی اخبار: تشخیص اخبار جعلی با استفاده از متن خبر و اطلاعات منابع منتشرکننده خبر»،پژوهشهای رسانه و ارتباطات، 1 (1)، 243-268.
ب- انگلیسی
- Almarashy, A. H. J., Feizi-Derakhshi, M. R., & Salehpour, P. (2023). “Enhancing Fake News Detection by Multi-Feature Classification”. IEEE Access. Almarashy, A. H. J., Feizi-Derakhshi, M. R., & Salehpour, P. (2023). Enhancing Fake News Detection by Multi-Feature Classification. IEEE Access.
- Azzeh, M., Elsheikh, Y., Nassif, A. B., & Angelis, L. (2023). “Examining the performance of kernel methods for software defect prediction based on support vector machine”, Science of Computer Programming, (226), 102916.
- Chai, C. P. (2023). “Comparison of text preprocessing methods”, Natural Language Engineering, 29 (3), 509-553.
- Das, M., & Alphonse, P. J. A. (2023). “A comparative study on tf-idf feature weighting method and its analysis using unstructured dataset”, arXiv preprint arXiv, 2308.04037.
- Dudeja, D., Noonia, A., Lavanya, S., Sharma, V., Kumar, V., Rehan, S., & Ramkumar, R. (2023). “Breast Cancer Diagnosis Using Bagging Decision Trees with Improved Feature Selection”, Engineering Proceedings, 59 (1), 17; https://doi.org/10.3390/engproc2023059017
- Emami, S., & Martínez-Muñoz, G. (2023). Sequential training of neural networks with gradient boosting. IEEE Access.
- Ghunimat, D., Alzoubi, A. E., Alzboon, A., & Hanandeh, S. (2023). “Prediction of concrete compressive strength with GGBFS and fly ash using multilayer perceptron algorithm, random forest regression and k-nearest neighbor regression”, Asian Journal of Civil Engineering, 24 (1), 169-177.
- Golovin, A. (2024). “Fake News. Fake News dataset based on FakeNewsNet”. In: Kaggle, Available at: https://www.kaggle.com/datasets/algord/fake-news.
- Guido, R., Groccia, M. C., & Conforti, D. (2023). “A hyper-parameter tuning approach for cost-sensitive support vector machine classifiers”, Soft Computing, 27 (18), 12863-12881.
- Ho, L. S., & Tran, V. Q. (2024). “Evaluation and estimation of compressive strength of concrete masonry prism using gradient boosting algorithm”, Plos one, 19 (3), e0297364.
- Hu, B., Sheng, Q., Cao, J., Shi, Y., Li, Y., Wang, D., & Qi, P. (2024, March). “Bad actor, good advisor: Exploring the role of large language models in fake news detection”. In: Proceedings of the AAAI Conference on Artificial Intelligence, 38 (20), 22105-22113.
- Kumar, R. (2024). “Fake News Prediction Dataset. Dataset is having records of real and fake news which can be used for prediction”, Available at: https://www.kaggle.com/datasets/rajatkumar30/fake-news?resource.
- Maheswari, R. U., & Sudha, N. (2024). “An efficient fake news classification model based on ensemble deep learning techniques”, Salud, Ciencia y Tecnología-Serie de Conferencias, (3), 649-649.
- Makkar, K., Kumar, P., Poriye, M., & Aggarwal, S. (2023). “Improvisation in opinion mining using data preprocessing techniques based on consumer’s review”, International Journal of Advanced Technology and Engineering Exploration, 10 (99), 257-277; DOI:10.19101/IJATEE.2021.875886.
- Patil, M., Yadav, H., Gawali, M., Suryawanshi, J., Patil, J., Yeole, A., ... & Potlabattini, J. (2024). “A Novel Approach to Fake News Detection Using Generative AI”, International Journal of Intelligent Systems and Applications in Engineering, 12 (4s), 343-354.
- Pichiyan, V., Muthulingam, S., Sathar, G., Nalajala, S., Ch, A., & Das, M. N. (2023). “Web Scraping using Natural Language Processing: Exploiting Unstructured Text for Data Extraction and Analysis”, Procedia Computer Science, (230), 193-202; DOI: 10.1016/j.procs.2023.12.074.
- Soetekouw, L., & Angelopoulos, S. (2024). “Digital resilience through training protocols: Learning to identify fake news on social media”, Information Systems Frontiers, 26 (2), 459-475.
- Solomon, F. A. M., Sathianesan, G. W., & Ramesh, R. (2023). “Logistic Regression Trust-A Trust Model for Internet-of-Things Using Regression Analysis”, Computer Systems Science & Engineering, 44 (2), 1125-1142.
- Truică, C. O., Apostol, E. S., & Karras, P. (2024). “DANES: Deep neural network ensemble architecture for social and textual context-aware fake news detection”, Knowledge-Based Systems, (294), 111715; https://doi.org/10.1016/j.knosys.2024.111715.
- Veziroğlu, M., Eziroğlu, E., & Bucak, İ. Ö. (2024). “Performance Comparison between Naive Bayes and Machine Learning Algorithms for News Classification”. In: Bayesian Inference-Recent Trends. IntechOpen.
- Xie, X., Yuan, M. J., Bai, X., Gao, W., & Zhou, Z. H. (2024). “On the Gini-impurity preservation for privacy random forests”, Advances in Neural Information Processing Systems, (36), 45055–45082.
- Yenkikar, A., Sultanpure, K., & Bali, M. (2023). “Machine learning-based algorithmic comparison for fake news identification”. (pp. 67-83). In: AI-Based Metaheuristics for Information Security and Digital Media. Chapman and Hall/CRC.
- Zaidi, A., & Al Luhayb, A. S. M. (2023). “Two statistical approaches to justify the use of the logistic function in binary logistic regression”. Mathematical Problems in Engineering. https://doi.org/10.1155/2023/5525675.
[1]. پژوهشگر حوزه مدیریت راهبردی فضای سایبر (نویسنده مسئول) a.tarrasoli@sndu.ac.ir.
[2]. Yenkikar, A., Sultanpure, K., & Bali, M.
[3]. WhatsApp
[4]. Signal
[5]. Cyberspace
[6]. Dataset
[7]. Patil
[8]. Hu
[9]. large language models (LLMs)
[10]. small language models (SLMs)
[11]. Truică
[12]. Novel Network Embedding
[13]. Lazer & et.al.
[14]. Soetekouw, L., & Angelopoulos, S.
[15]. Pichiyan, V., Muthulingam, S., Sathar, G., Nalajala, S., Ch, A., & Das, M. N.
[16]. Makkar, K., Kumar, P., Poriye, M., & Aggarwal, S.
[17]. Stemming
[18]. Lemmatization
[19]. Chai
[20]. Stop word removal
[21]. Tokenization
[22]. Tokens
[23]. Maheswari & Sudha
[24]. Das & Alphonse
[25]. Feature extraction
[26]. Document-term matrix
[27]. Vector Space Model (VSM)
[28]. Term Frequency-Inverse Document Frequency (TF-IDF)
[29]. Inverse Document Frequency (IDF)
[30]. Term Frequency (TF)
[31]. Binary representation
[32]. Almarashy
[33]. Random Forests (RF)
[34]. Bagging
[35]. Decision Trees
[36]. Dudeja, D., Noonia, A., Lavanya, S., Sharma, V., Kumar, V., Rehan, S., & Ramkumar, R.
[37]. Random forest regression
[38]. Ghunimat, D., Alzoubi, A. E., Alzboon, A., & Hanandeh, S.
[39]. Classification Random Forest
[40]. Gini Impurity
[41]. Xie, X., Yuan, M. J., Bai, X., Gao, W., & Zhou, Z. H.
[42]. Support Vector Machine (SVM)
[43]. Supervised Learning
[44]. Cortes and Vapnik
[45]. Hyperparameters
[46]. Hyperplane
[47]. Guido, R., Groccia, M. C., & Conforti, D.
[48]. Kernel functions
[49]. linear kernel
[50]. polynomial and radial functions
[51]. Azzeh
[52]. Naive Bayes (NB)
[53]. Multinomial Naive Bayes
[54]. Veziroglu, M., Eziroglu, E., & Bucak, I. O.
[55]. Logistic Regression (LR)
[56]. logistic Sigmoid
[57]. Cost Function
[58]. Zaidi, A., & Al Luhayb, A. S. M.
[59]. Gradient Descent
[60]. The Beta coefficients
[61]. Solomon, F. A. M., Sathianesan, G. W., & Ramesh, R.
[62]. Gradient Boosting (GB)
[63]. loss function
[64]. Emami, S., & Martínez-Muñoz, G.
[65]. Ho, L. S., & Tran, V. Q.
[66]. Kaggle
[67]. Kumar, R.
[68]. Golovin
[69]. Retweet
[70]. RapidMiner
[71]. Confusion matrix
[72]. True-Positive
[73]. False-Positives
[74]. True-Negatives
[75]. False-Negatives
[76]. Accuracy
[77]. F1-Score
[78]. The Recall and Rhe Precision
[79]. Harmonic Mean
[80]. Hybrid warfare